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ABSTRACT 

In this  paper  we cont inue the  s t u d y  of R6nyi entropies  of measure-  

preserving t r ans fo rma t ions  s ta r ted  in [22]. We have es tabl ished there  

tha t  for ergodic t r ans fo rma t ions  wi th  posit ive entropy, the  R6nyi en- 

tropies of  order q, q E R, are equal  to ei ther  plus  infinity (q < 1), or  

to the  measure- theore t ic  (Kolmogorov-Sinai )  en t ropy (q > 1). T h e  an- 

swer for non-ergodic t r ans fo rmat ions  is different: the  R~nyi entropies  of  

order q > 1 are equal  to the  essential  in f imum of the  measure- theore t ic  en- 

tropies of  measures  forming the  decomposi t ion  into ergodic componen t s .  

Thus ,  it is possible t h a t  the  R6nyi entropies of order q > 1 are s t r ic t ly  

smaller  t h a n  the  measure- theore t ic  entropy,  which is the  average value of 

entropies  of ergodic components .  

Th i s  result  is a bit  surprising:  the  R~nyi entropies  are metr ic  invariants ,  

which axe sensit ive to ergodicity. 

T h e  proof  of  the  described result  is based  on the  cons t ruc t ion  of part i-  

t ions with independen t  i terates.  However, these  par t i t ions  are ob ta ined  

in different ways depend ing  on q: for q > 1 we use a version of the  

well-known Sinai t heo rem on Bernoulli  factors for the  non-ergodic  t rans-  

format ions;  for q < 1 we use the  not ion  of collections of independen t  sets  

in Rokh l in -Ha lmos  towers and  their  properties.  

R e c e i v e d  D e c e m b e r  8, 1999 a n d  in  r e v i s e d  f o r m  J a n u a r y  4, 2001 
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1. I n t r o d u c t i o n  

Alfred R~nyi introduced the generalization of the Shannon information (entropy) 

in the beginning of sixties. His approach was based on an axiomatic definition of 

information, and consisted of including the standard entropy function 

H(pl , . . .  ,Pn) = - ~-~Pi logpi 
i=1 

into a one-parameter family of generalized entropy functions 

1 l o g ( E p ~ ) ,  q ¢ 1 .  
Hq(Pl, . . . ,pn) -- q -  1 i=1 

For a fixed probability distribution (Pl , - - . ,  P,~) the standard entropy is recovered 

from the generalized entropies as follows, 

H(pl , . . .  ,Pn) = lira Hq(pl, . . .  ,pn). 
q--+l 

Since then the R~nyi entropies have been successfully used in information theory 

and statistics, and more recently in thermodynamics and quantum mechanics. In 

dynamical systems, Hentschel and Procaccia [8] suggested a one-parameter family 

of generalized dimensions based on R~nyi's approach. These dimensions proved 

to be extremely useful in problems of multifractal analysis and characterization 

of chaotic attractors; see, e.g., [13]. 
Some attempts [7], [6] were made to introduce the generalized entropies of 

dynamical system using Rdnyi's approach. The idea was to produce a sufficiently 

rich family of invariants of a dynamical system, which will take into account 
the non-uniform behavior of invariant measures. However, the proposed way of 

generalizing the Kolmogorov-Sinai entropy using Hq instead of H1 turned out to 
be non-productive. In [22] we have established the following fact. 

THEOREM 1.1: For an ergodic dynamical system (X, ff~,#,T) with positive 

measure-theoretic entropy h(T,#) > O, the Rdnyi entropies are given by the 
following formula: 

+oc, q < 1, 
h ( r , q , # ) =  h(T, iz), q>_l. 

Also in [22] we suggested another family of generalized entropies, which 

recovers the results reported in the physics literature [1]. 
The proof of Theorem 1.1 relies heavily on the Sinai theorem on Bernoulli 

factors [19], for which the assumptions of ergodicity and positiveness of the 

measure-theoretic entropy are crucial. 
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In this paper we prove a result, similar to Theorem 1.1, but without the above 

assumptions. We consider aperiodic measure-preserving automorphisms, i.e., 

transformations T defined on Lebesgue space (X, ~ ,  #) such that 

it({x: Tn(x)= x for some n}) = O. 

The result for such systems is different from the ergodic case. 

THEOREM 1.2: Suppose T is an aperiodic measure-preserving automorphism of 
the Lebesgue space (X, ~ ,  it). Let it = f ittdm(t) be the decomposition of it into 
ergodic components, and let 

h,(T, it) = m-essinf{h(T, itt)} := sup{c: m{t: h(T, itt) < c} = 0}. 

Then the Rdnyi entropies are as follows: 

+oc, q < 1, 
h(T ,q ,# )= h(T, l t)= f h ( T ,  itt) dm(t), q= l, 

h,(T,#),  q > 1. 

This result is a bit surprising because of the following: an entropy-based in- 

variant can detect ergodicity. However, we are not aware of any interesting 

example where this observation could be useful. The first candidates which come 

to mind are the non-ergodic Markov shifts, i.e., the shifts for which the transi- 

tion probability matrix P is not irreducible. It is possible in this case (provided 

h(T,#) > h , (T ,# ) ,  of course) to show the R~nyi entropies of order q > 1 are 

strictly smaller than the measure-theoretic entropy, and thus the system is not 

ergodic. However, this proof is much more involved than the standard one and 

follows the same idea. 

The paper is organized as follows: in the next section we give a formal definition 

of the RSnyi entropies and establish the basic properties; in section 3 we recall 

facts about the decomposition into ergodic components. We discuss a non-ergodic 

version of Sinai's theorem on Bernoulli factors, and use it for the computation 

of the R~nyi entropies of order q > 1 in section 4. In section 5 we develop 

a notion of independent partitions in Rokhlin Halmos towers' and subsequently 

prove the statement for q < 1. Finally, in the last section, we pose some open 

questions about the possible connection between the Rdnyi entropies and the 

recently introduced entropy convergence rates. 
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2. R~nyi  entropies  of  measure-preserving transformations  

The definition of the R~nyi entropy of order q of a measure-preserving transfor- 

mation goes along the lines of the standard definition of the measure-theoretic 

(Kolmogorov-Sinai) entropy and consists of 3 steps: the definition of the Rdnyi 

entropy of a finite partition, Rdnyi entropy of an automorphism with respect to 

a partition, and, finally, after taking the supremum over all finite partitions, the 

R~nyi entropy of an automorphism, which is a metric invariant. 

For any q E 1( the entropy of order q of the partition ~ -- {As}i~=l is the number 

(2.1) H~(q,~) = { -q---~ll~l°g(~$-1' ] #(AS)q)' for q ¢ 1, 

-- ~ i : 1  #(Ai) og #(As), for q = 1, 

with the standard convention 0 q = 0 for all q E R and 0 log 0 = 0. 

It is easy to check the following monotonicity property: 

Hu(ql,~ ) < Hu(q2,~) for any ~ and qt >_ q2. 

The R~nyi entropy of order q with respect to a partition ~ is defined as 

(2.2) h(T,#,q,() = liminf 1H~(q,~(n)~, 
n --)* o o  n \ / 

n - 1  where ~(n) = ~ V T- I~  V. . .  Y T-n+l~ is the partition into sets Ak=0 T-kAsh with 

Ask e ~. 

Remark: For q = 1 it is known (see for example [4]) that the limit in (2.2) 

exists. The proof of this fact is based on a so-called subaddi t iv i ty  property  

of the Shannon entropy H(1, ~): 

H.(1 ,~  V ~?) <_ H.(1,~)  + H.(1,~?) 

for all partitions ~,~. As was shown by R~nyi in [14], the latter is not the case 
for any q ~ 1. This creates some additional problems in the treatment of the 

R~nyi entropies. Nevertheless, if ~ and y are independent partitions then 

H,(q ,~  V ~/) = Ho(q,~) +H,(q,~) 

for all q C]R. We will often exploit this fact. 

Finally, we define the Rdnyi entropy of an automorphism T of order q as the 

number 

(2.3) h(T, /~, q) = sup h(T, ~, q, ~), 

where the supremum is taken over all finite partitions ~ of X. 
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PROPOSITION 2.1: The Rdnyi entropies have the following properties: 
(1) h(T, #, q) >_ 0 for all q; 
(2) h(T,#,ql) > h(T, it, q2) forql  _< q2; 
(3) h(T, #, 1) = h(T, #), where h(T, #) is the measure-theoretic (or Kolmogorov 

-Sinai) entropy. 
(4) h(T n, It, q) = nh(T, It, q) for any q • R and every n >_ O. 

Properties 1 3 follow easily from the definition of h(T, #, q), and (4) has been 

established in [22]. 

3. Decomposit ion into ergodic components  

Let (X, ~ ,  #) be a Lebesgue space [4]. For a measurable parti t ion ~ = {Ct}teh, 
where A can be finite, countable or uncountable, we identify A and the quotient 

(or factor) X/~  - -  the space whose points are the elements of ~. The set A is 

a Lebesgue space as well: the set E C A is measurable if the set UtcE Ct is a 

measurable subset of X, and we obtain a measure m on A by letting m(E) = 
it([-JteE Ct). A system of measures {#t}, t • A, is called a canonical system 
of  conditional measures belonging to the partition ~ = {Ct}teh, if 

(1) #t is defined on some a-algebra ~3t of subsets of Ct, such that  (Ct, fBt, #t) 
is a Lebesgue space, 

(2) for any A • ~ the set A ACt belongs to ~3t for m-almost  all t; the function 

#t(A N Ct) is a measurable function of t and 

it(A) = f #t(A ~ Ct) din(t). 

Suppose T: X ~ X is a measure-preserving automorphism. Then (X, ~3, #) 

can be decomposed into ergodic components of T. By this we mean the following: 

there exists a T-invariant measurable parti t ion ~ = {Ct} and a canonical system 

of conditional measures {#t} such that  for almost all t 

(Ct,~t,  #t, TIc,) is ergodic. 

Suppose ~ = {Ct} is the decomposition into ergodic components of 

(X, ~ ,  #, T); then 

#) = / h(T, #t) dm. h(T, 

Consider the essential infimum and the essential supremum of measure-theoretic 
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entropies of the measures #t from the decomposition into ergodic components: 

h,(T, #) =m-essinf{h(T, #t)l t C A = X / ( }  

:-- sup{c: m({t: h(T, < = o}, 

h*(T, #) =m-esssup{h(T, #t)[ t E A = X/¢} 

:= in f{c :  m({t :  h(T,#t) > c}) = 0}. 

The quantity h* (T, #), sometimes called the e n t r o p y  ra te ,  has been previously 

studied in the literature [9, 21, 23] in relation to the existence of finite generators 

(generating partitions) for non-ergodic systems. A well-known theorem of Krieger 

[11] states that an ergodic dynamical system with a finite measure-theoretic en- 

tropy h(T,#) admits a finite generator ~ with card(~) _< exp(h(T,#)) + 1. It 

turns out that  for non-ergodic aperiodic dynamical systems a similar result is 

true, provided h*(T, #) < oc: a finite generator ~ exists whose cardinality does 

not exceed exp(h*(T, #)) + 1. 
Denote by YIm = {P = (P1,.. . ,  Pro)} the set of all ordered partitions of X into 

m sets. For any measure # on (X, ~ )  define the p a r t i t i o n  (p seudo- )me t r i c  

p,  on H,~ as follows: 

m 

pAP, Q) =  ,(Pk A Qk), P, Q e rim. 

If pt,(P, Q) = 0 then P and Q agree except on a set of measure 0 and, of course, 

in this case we say that  P = Q. The space (Hm, p~) is a complete metric space. 

For an at most countable ordered partition P of (X, ff~, #) the distribution 

vector of P is given by 

d(P,  ~t) = (~ t (P1)  , ~ ( p 2 ) , . . . ) .  

Suppose P and/5  are partitions into m sets of (X, ~ ,  #), (Y, 9 r ,  p) respectively; 

then the d i s t r i b u t i o n  d i s t ance  is 

m 

]d(P,~) - d(P, v)l := ~ P#(Pk) - v(Pk)l. 
k----1 

Suppose we have a set {#t}tei  of measures on (X, ~) .  For every t E A consider 

the metric Pt*~ on II,~. The following fact will be used later: there exists a 
countable set I'Im C IIm which is p~,-dense in 11 for almost every t E A. 

The existence of such I~Im follows from the fundamental properties of the 

Lebesgue spaces. By definition, a Lebesgue space (X, ~ ,  #) admits a countable 
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basis P = {B~}. This  in par t icular  means  t ha t  for any measurable  set A E 

there exists a set C from a minimal  a -a lgebra  generated by F such t ha t  

(3.1) C c A  and # ( A \ C ) = 0 .  

Denote  by 2 the countable  a lgebra  genera ted by F, and let 

Hence l=I,~ is an a t  mos t  countable  collection of ordered par t i t ions  into m sets, 

where elements of these par t i t ions  are taken from ~t. F rom (3.1) we conclude 

t ha t  l:Im is p ,  dense in Hm. Moreover,  for a lmost  every t E A, lZIm is pro-dense 

in 1-Ira as well. This  is a consequence of the following fact ([15], see also [16]): for 

a lmost  every t E A, the countable  collection of sets Ft = F n Ct is a basis in the 

Lebesgue space (Ct, ff3t, itt). 

4. R4nyi entropies of order q > 1 

In this section we are going to prove tha t  h(T, it, q) = h. (T, it) for every q > 1. 

We s ta r t  by showing tha t  h(T, it, q) < h.(T, it). 

4.1. ESTIMATE FROM ABOVE. Suppose t ha t  we have two invariant  measures  it1 

and it2 for an a u t o m o r p h i s m  T. We do not assume these measures  to be ergodic. 

Wi thou t  loss of generali ty we can assume tha t  

(4.1) h(T, #1) <_ h(T, it2). 

Consider now another  invariant  measure  it = c~itl + (1 - (~)it2 wi th  a E (0, 1). 

The  measure- theore t ic  ent ropy of it is given by (see [5]) 

h(T, it) = c~h(T, itl) + (1 - a )h (T ,  it2). 

Note t ha t  due to (4.1), h(T, #) >_ h(T, it1). Let { be some finite par t i t ion.  For 

any C E ~ one has 

it(C) = ~ i t l (C)  + (1 - ~ ) m ( C ) ,  

and, therefore, it(C) q > cditl(C) q for q > 1. Hence, for q > 1 

1 1 
Hu(q ,~) -  q - 1  q - 1  q - 1  

ce~ c6~ 

_ q logo~+Hu,(q,~). 
q - 1  
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From the above one easily concludes tha t  

h(T, it, q, ~) = l imin f  1Ht~(q , {(~)) < l iminf  1 H i ,  1 (q, ~(n)) = h(T, Pl, q, ~). 
n - - + ~  r t  n ~ - ~ o o  n 

On the other  hand,  due to the monotonic i ty  of the RSnyi entropies with respect  

to q, for q > 1 we have 

h(T, itl, q, ~) <_ h(T, it1, q) <_ h(T, it1, 1) = h(T, it1). 

Combining  the two last  inequalities we finally obta in  tha t ,  for ally q > 1, 

h(T, it, q) <_ h(T, it1). 

Thus  we see tha t  the R~nyi ent ropy of a linear combinat ion  of two measures  does 

not exceed a m in imum of the measure- theoret ic  entropies of these two measures.  

I t  is evident tha t  the above a rgument  goes through in the case of a finite or 

countable  decomposit ion:  # = ~ k  akitk, where ak _> 0 and ~ k  ak  = 1. 

Moreover,  the above a rgument  can be equally easily generMized to  tile case 

of generally uncountable  decomposi t ion  of an invariant measure  it into ergodic 

components  {itt}. This  is done in the following lemma.  

LEMMA 4.1: For a measure preserving system (X, fB, it, T) one has 

(4.2) h(T, it, q) ~_ h, (T, #) 

for every q > 1. 

Proof: Consider an ergodic decomposi t ion of (X, ~ ,  it, T)  as in section 3. By the  

definition of h ,  (T, it), for every s > 0 the set Ez = {t: h(T, itt) < h, (T, it) +¢} has 

a posit ive m-measure .  Suppose there exists e0 > 0 such tha t  for any e E (0, c0) 

one has m(E1)  < 1. 

If such e0 > 0 does not exist, then 

h(T, its) = h , (T,  it) for m - a . a . t .  

As a result  we immedia te ly  conclude t ha t  h(T, #) = h . (T ,  #), and using the fact 

tha t  h(T, #) >_ h(T, #, q) for any q > 1 we obta in  our claim (4.2). 

Assume such eo > 0 exists and choose any e E (0, Co). Since re(E1) G (0, 1) we 

can define 

l I E  1 /E #tdm(t)" itl -- m(E1)  itt din(t), #2 - 1 - m(E1)  
1 
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It  is clear that  #1 and #2 are invariant probability measures. Moreover, h(T, #1) 
_< h,(T,  #) + ~. Using the above argument for two measures #1 and #2 we 

conclude that,  for any q > 1, 

h(T,#,q) <_ h . (T ,#)  + ~. 

Since ~ > 0 can be chosen arbi trary small, we obtain the claim (4.2). | 

4.2. BERNOULLI FACTORS OF NON-ERGODIC SYSTEMS. Let us recall a defini- 

tion of a B e r n o u l l i  a u t o m o r p h i s m .  

Definition 4.2: An automorphism T of a Lebesgue space (X, ~ ,  #) is called 

Bernoulli, if it is measure-theoretically isomorphic to a Bernoulli shift. 

If  T is a Bernoulli automorphism, then there exists a parti t ion P of X such 

that  

(1) P is generating, 

(2) {TnP}~cz is a sequence of independent partitions. 

Such a parti t ion P is called an independent generator for T. A well-known 

theorem by Sinai [19] states that  for every ergodic automorphism T with en- 

tropy h(T, #), and every positive number h such that  h <_ h(T, it), there exists a 

Bernoulli factor with entropy h. A non-ergodic version of the Sinai theorem first 

appeared in [10]. 

THEOREM 4.3: Suppose T is an automorphism of a Lebesgue space (X, fg, #). 
Let T be a Bernoulli automorphism of (Y, 5, u) with a finite independent genera- 

tor [~, card(/5) = k. Let { Ct, #t } be a decomposition of ( X,  fg, #, T) into ergodie 
components and m be a corresponding measure on the factor X /{Ct} .  Assume 

that h.(T, #) >_ h(T, u). Then there exists a parti t ion Q, card(Q) = k, such that 
(i) {TiQ} is a sequence of independent partitions, 

(ii) d(Q, it) = d(/5, u). 

In fact, using the techniques of [10] one can establish a non-ergodic version of 

the Ornstein fundamental lemma [12, 18, 20] as well. The strategy of generalizing 

"ergodic" results to the non-ergodic case consists of the following. Suppose that  

{Ct, itt} is the decomposion of it into ergodic components, and that  for almost 

every t there exists a parti t ion Pt of Ct into m elements which satisfies some 

required property. We recall that  there exists a countable family of partitions 

l:Im which is p, t-dense in the set all partitions into m elements for almost all t; 

see section 3. Using this family l:im one can construct a universal parti t ion P 

such that  P N Ct = Pt for almost all t. 
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4.3. ESTIMATE FROM BELOW.  Now we can prove a lower estimate: h(T, #, q) > 
h. (T, #) for all q > 1. Before we proceed with this estimate we would like to make 

a few remarks. Firstly, we compute the R6nyi entropy of order q for a Bernoulli 

shift. Let ~ = {1 , . . . ,  k} z, and a: ~2 -+ ~ be a left shift. Let v be a Bernoulli 

measure on ~ generated by a probability vector p = (Pl , . . .  ,Pk), i.e., 

~ { ~  = ( ~ ) :  ~ m  = a m , . . . , ~ ,  = a n )  = p a ~  "" "pa, ,  

for all m _< n and am, . . . , an  E {1 , . . . ,k} .  Denote by ~ the partition into the 

following cylinders: 

= { ~ 1 , . . . ,  ~ k } ,  ~ = { ~  = (~ , ) :  ~0  = n } .  

It is not very difficult to see that,  for q # 1, 

k 

1 l o g ( Z P ~ ) -  
h ( a , v , q , ~ ) -  q - 1  i=1 

In particular, if pl . . . . .  Pk = 1/k, then h(a, v, q, ~) = log k. In this case, since 

h(a, p) = log k, we immediately conclude that h(a, v, q) = log k for q > 1. 

We would also need the following statement. 

LEMMA 4.4: Suppose T: Y -+ Y is an automorphism preserving a measure u. 
Then for any prime p > 1 one has 

h, (2P, .)  = ph,($,  ~). 

Proof: Assume first that (T, v) is ergodic. If TP: Y -~ Y is ergodic, then there 

is nothing to prove, since in this case h.( 'r  p, v) = h(T p, v) = ph(T, u). 
If TP is not ergodic, then [17, p. 38] there exist disjoint sets Ao , . . . ,  Ap-1 such 

p--1 that  Y = [.Ji=o Ai (mod0), T(Ai) = Ai+lmodp, and TP is ergodic on A0 with 

respect to v(-]Ao). Therefore, h . (T  p, v) = ph(T, u). 

Hence, we conclude that if (10, v) is ergodic, then h . (T  p, v) = ph(T, v) for any 

prime p, p _> 1. 

Assume now that (T, #) is not ergodic and let # = f #t dm be the decomposi- 

tion of # into ergodic components. Applying the argument above to each (T, #t) 

we conclude that h. (T p, #t) = ph(T, #t), and therefore h. (T p, #) = ph. (T, #). 
| 

Now let us proceed with the proof of the inequality: h(T, #, q) >_ h. (T,#)  for 

all q > 1. Assume the opposite, i.e., there exists q > 1 such that h(T, #, q) < 
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h, (T, #). Take a sufficiently large prime p such that there exists an integer k 

satisfying 

(4.3) ph(T,#,q) < logk < ph,(T,#) = h.(TP,#). 

Consider a Bernoulli shift, defined as above, with pl . . . . .  Pk = 1/k. Then by 

Theorem 4.3 there exists a Bernoulli factor Q for T p with #(Q1) . . . . .  #(Qk) = 
1/k. Thus h(T p, it, q, Q) = log k, but this is in contradiction with (4.3), since 

ph(T, #, q) = h(T p, #, q) = sup h(T p, #, q, R). 
R 

Hence, h(T,p,q) > h,(T,#) for q > 1, and together with (4.2) this gives the 

equality h(T, #, q) = h, (T, #) for all q > 1. 

5. R~nyi  e n t r o p i e s  o f  o r d e r  q < 1 

In this section we will prove the remaining part  of Theorem 1.2. The techniques 

which we are going to use will be different from the previous section. The reason 

is that  we do not want to assume h,(T,#) > 0 (or even h(T,l~) > 0). In the case 

when h,  (T, p) > 0, we can (with the help of the non-ergodic version of Sinai's 

theorem on Bernoulli factors obtained in the previous section) proceed as in [22]. 

Our main goal is to construct partitions with arbitrarily large R~nyi entropy 

of order q, q < 1: for every C > 0 we have to find a partition ~ such that 

(5.1) h(T, #, q, ~) = lim inf 1H~(q, ~(k)) > C. 
k - ~  /~ 

Since the Rdnyi entropies are monotonic in q we can restrict ourselves to q E (0, 1). 

First of all, let us make an observation which will allow us to simplify the 

estimate of the Rdnyi entropy of a partit ion from below. 

Definition 5.1: The R~nyi entropy of order q, q ¢ 1, of a finite partition ~ = { A~ } 

restricted to a set F,  # (F)  > 0, is the number 

1 log ( E ~(/ki~lF)q) H"(q'7]IF)- q ~  
AiC~? 

It is easy to see that  for each q e (0, 1) and for any set F,  ~(F)  > O, one has 

(5.2) H•(q, n) >- H,(q, ~?IF). 

In the next subsection we will show how this can be used when F is a base of 

some Rokhlin-Halmos tower and ~ is some special partition. 
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5 .1•  R O K H L I N - H A L M O S  TOWERS AND INDEPENDENT COLLECTIONS OF SETS. 

We have assumed that  T is an aperiodic automorphism. I t  is well known that  

for such automorphisms one can construct Rokhlin-Halmos towers of any height 

and measure arbitrarily close to 1. 

Let M C X; then T = {M, TM,.. . ,  Tm-IM} is called a R o k h l i n - H a l m o s  

t o w e r  if 

TiMNTJM=O forO<_iT~j<_m-1. 

m - 1  We will use the same letter r for Uk=0 TkM" The height of the tower r is said 

to be m and #( r )  = m~(M) is its measure. 

We now give a definition of an independent collection of sets relative to a 

Rokhlin-Halmos tower. We will associate to such collections certain partitions, 

which will be analogous to Bernoulli partitions. 

Definition 5.2: Let r = { M , . . . ,  Tm-IM} be a Rokhlin-Halmos tower. We say 

that  a collection Z = { I1 , . . . ,  IN-l} of subsets of T is independent relative to r 

if 

(1) I i n I j = O f o r i C j ;  
(2) denote by ~z the parti t ion of X into the sets 

N--1 

{I1,...,IN-I,IN := X \ U Ij}; 
j=o 

then 

k m--1 
• ~ } k = O  

{T_k(I1NTkM), ..,T_k(ilvn T M)}k=o {T_k(~zNTkM ) ra--1 

is a collection of independent partitions of M. 

For convenience we will always assume tha t  

(3) # ( / j  N T k M )  = ~ for j = 1 , . . . , N  and k = 0 , . . . , m -  1. 

Collections of independent sets exist in every tower. This follows from the 

following two observations• Firstly, since T is assumed to be aperiodic, the 

invariant measure # has no atoms. Secondly, for any Lebesgue space (X, ~ ,  #), 

where tt has no atoms, for every measurable set A and each a E [0, #(A)] one can 

find a set B C A with #(B)  = a. 

It  follows immediately from Definition 5.2 that  if I is a collection of indepen- 

dent sets in T and ~z is the corresponding partition, then 

~(k) n M : {bl n T-1Ij: N... N T-k+lljk N M: jl C {1 , . . . ,  N}} 
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is a partition of M into N k sets of equal measure # ( M ) / N  k for every k = 1 , . . . ,  m. 

[ ]  ~ ~ ~ ~ ~ ~ ~ ~ IN] T m ' I M  

NNN------ N N N t ~  
: i 

NNNNTM 

M 

Figure 1. Independent sets (11, 12) in T = (M, T M , . . .  , T m - I M ) .  

Using (5.2) we easily obtain an estimate on the R~nyi entropy of ~(m): 

1 l o g N m ( # ( M ) ~ q  

= m l o g N  + ~ log#(M).  

If the measure of the base of the tower #(M)  is not too small, say /z(M) _> 

N-"('-~)/(~q), then H.(q, ~z~))/m >_ (log N)/2. 
In the next subsection we estimate the R~nyi entropy of a partition which is 

'close' to some partition ~z, where 27 is a collection of independent sets. 

5 . 2 .  APPROXIMATION LEMMA. Let, I : ( I 1 , . . . ,  I N - , )  be a collection of inde- 

pendent sets in the tower ~" = ( M , . . . ,  T m - x M ) ,  and let ~z = { /1 , . . - ,  [Iv} be 

the corresponding partition. Suppose that another partition ~ = (El , .  •., EN) is 

such that the sets 

E2 = E j N T  
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are "close" to the corresponding Ij 's  for j = 1 , . . . ,  N - 1. Since the partition 

~(m) has a large RSnyi entropy (subject to a relation between N and #(V) of 

course), then the partition ~/(m) has a large R~nyi entropy as well. This can be 

rigorously formulated in the following way. 

LEMMA 5.3: Let Z = {I1, . . - ,  IN- l}  be a collection of independent sets in r = 
(M, . . . ,  Tm-IM)  with m >_ 16, and let ~z = { I b . - . ,  IN-l ,  IN := X \ U;_l  11j} 

be the corresponding partition. Suppose ~1 = (E1, . . . ,EN-1,  EN) is another 
partition of X such that 

N-, 
(0.3) . (E;AZA < 

16(N + 31)" 
j----1 

Then for every q 6 (0, 1) one has 

1 q log #(r) 1 log 2m q. 
~H~(q ,y  (m)) >_ ~ l o g N - l o g 2 +  ( 1 - q ) m  1 - q  

Proof: This lemma is a generalization of lemmas 2.6 and 2.7 from [3], and its 

proof follows quite closely the proofs of the corresponding results in [3]. Never- 

theless, due to the necessary modifications and for the sake of completeness we 

provide a proof here. 

We shall use the following notation: let f~ = {1 , . . . ,  N} and 

- - m + l  A(r) = It1 n T-l i t2 n . . .  n T Ir.~ for r = (r l , . . . , rm) 6 f~m, 
--m-F1 /X(s) = Esl NT-1Es~ N . . . N T  Esm for s = ( s l , . . . , s m )  6 ~m. 

We know that #(A(r) N M )  = #(M) /N  m. Since ~ is close to ~z in 7, we 
expect the sets y(m) n M to have approximately the same measure as the sets of 

~('~) n M. Let us make it precise. We say that /~(s), s 6 gt "~, is a 'bad' (or a 

'fat') element of ~(m) if 

#(/~(s) n M) > 2mN-m/4#(M), 

and is 'good' (or 'thin') otherwise. We collect the indexes of all 'bad' elements 

into the set 
S = {s 6 £tm: /~(S) is 'bad'}. 

We will now show that 'bad' elements of *l (m) cover less than a half of M in 

measure, i.e., 
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We introduce the following notation: 

M(s,  r) = /~(s )  n A(r) N M, 
m-- 1 

T(s,r)  = U T k M ( s ' r ) '  
k----0 

, (s)= U ~(s,r). 
rE~ m 

It is easy to see that  

(5.4) 

Let s E ~m; then 

M(s,  r) n M(s,  t) = 0 for r # t ,  

T i M ( s , r )  F f l T J M ( s , r ) = 0  for i # j ,  

r ( s , r )  n T ( s , t ) - = 0  for r C t .  

N - I  N - 1  

~(( u ~; ~ i~) ~ ~s~) = .o~z .((  ,u ~; ~,~) ~ ~ ~) 
m--1 

= j=l E; r)). 

Consider the sets participating in the last sum separately. We claim that 

N - 1  

(5.5) ( U E~A Ij)NTkM(s,r)= { T k M ( s ' r ) '  
j=l  0, 

For this it is sufficient to show that 

(~ ) {~ °'~ UE;~Ij  nE'sk nI~= 0,8~ 
j----1 

if sk ¢ rk, 
if sk = rk .  

(5.6) if sk ~ rk ,  
if sk = rk .  

The proof is straightforward: let j = 1 . . . .  , N - 1 and k = 1 , . . . ,  m; then 

=: A U B .  

Suppose first that sk = rk. Then for j = sk = rk we have 

since/3. C 7 for j = 1 , . . . ,  N - 1. 
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For j ~ Sk = rk we have 

E ~ " Irk) = O, 

since Ej N Esk = Ij N I~ k = ¢. 

Now consider the case Sk ¢ rk. If j ¢ Sk and j ¢ rk, then 

A U B  C_ ( E j n E s k ) U ( I j N I r k )  =0.  

If j ¢ sk and j = rk, then A C_ (E~: \ / j )  n E~ k = 0, but 

B = (• \ E ; )  nick = (Irk n Es\), 

since E~ n E~k = O. 

Similarly, for j ---- sk and j ~ rk, we conclude that B = 0, but A = E~k n I~ k . 

Hence we proved (5.6), and therefore (5.5). 

Using (5.5) and the fact that T is measure-preserving, we can simplify (5.4): 

N-1 
(5.7) # ( (  U E ~ A I j ) N T ( S ) ) =  ~ dH(S,r)#(M(s,r)) ,  

j=l  rEf~ TM 

where dH(S, r) : ~{k: sk 2~ rk} is the H a m m i n g  d i s t ance  between s and r. 
We rewrite (5.7) in the following form: 

N - 1  m 

(5.8) #(( U E~A ' , ) A T ( S ) ) :  Zi  ~ #(M(s,r)). 
j = l  / : 0  r : d H ( S , r ) : i  

Given s E f~m the number of r's such that dH(S, r) : i is C i m ( N -  1) i, where 

C m is the binomial coefficient. Let us introduce the following notation: 

#(M) c i  ( N -  1) i. xi(s) := ~ #(M(s , r ) ) ,  Y i . -  Nm ~ m , -  
r: dH(s,r)=i 

Note that # ( / ~ ( s ) n  M )  = ~-]im__0 xds ). 
Since M(s,  r) C A(r) n M and #CA(r) n M) = # ( M ) / N  m, for every i one has 

xi(s) = ~ # (M(s , r ) )  < N m ~ 1 
(5.9) ~:d. (~ x)=i ~:d. (~,~)=i 

_ ~ ( M ) c 2 ( N  _ 1) ~ = y~. 
N m 
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Furthermore, for every s there exists ks C {1, . . . ,  m} such that 

ks m ks -- 1 

(5.10) E yi > E xi(s) > E y'" 
i----0 i = 0  i = 0  

m _ ~ - , k s -  1 From (5.9) and (5.10) we conclude that ~ i = t  x~(s) > z_~i=t Y~ for all 1 >_ 0, and 
as a result 

m ks- -1  

(5.11) E ixi(s) >_ E iyi. 
i = 0  i = 0  

We will show now that if s c S then ks > [3m/4] + 1. Indeed, if s E S, then by 
the definition of S, 

#(A(s) N M) > 2mN-m/41z(M), 

and from (5.9) we have 

ks 

N "~1 E C ~ ( N _  1) i -> ~-~4:° xi(s)#(M) #(/~(s) R M ) # ( M )  >- 2raN-m~4" 
i = 0  

However, Lemma 6.1 (see Appendix below) states that 

k 

1 E C ~ ( N -  1) i < 2raN -m/4 
N m 

i = 0  

for all k = 0, 1 . . . .  , [3m/4]. Hence, k, 2 [3m/4] + 1. 
Now, for all s E S we have 

N - 1  m 

.(( U n , ,  = 
j = l  i = 0  

k.-1 #(M)k~liC¢,,( N >- E iY~- ~ ~ -1 )  / 
i = 0  i = 0  

ks MM) m 
>- N m 8 ( N + 3 1 )  _ C~(N-1)  i 

k~ 
m 

- 8 ( N  + 31) 

m £ x i ( s )  (by (5.10)). 
> 8(N + 31) ~=0 

(by (5.8)) 

(by (5.11)) 

(by Lemma 6.1) 
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Hence, 

((v ) ) /.t( U E ~ / ~ I j ) > Z #  E ; A I j  M T(S) 
j-=l ~ES \j----1 

m 
m m 

> 8(N+ 31) Z Z x ' ( s )  -- 8(N+ 31) Z Z #(M(s,r)) 
s E S  i--~O t~ES r E ~  m 

_ m 

8(N + 31) ~ , (£(s )  n M). 
sqS 

Therefore, using our assumption (5.3) one has 

S(N + 3 1 ) ( ~ i  1 b )  Z #(/~(s) M M) _< ~- # ~ E;  
sES j = l  

8(N + 31) T' ~#(M), 
-< 16--(~3-~)m/~( ) =  

i.e., 'bad' elements/~(s) cover not more than a half of M. 
Now we can estimate the Rdnyi entropy of the partition ~/(m): 

H"(q'rl(m)) >- H"(q'tl(m)lM) = 1 - q s 

1 l ° g (  a ~  #(zX(s) N M)q) 
> 1 - q  se s 

1 log ( 2 ~ - - ~ - ~ - ~ - )  l_q 
-> 1 - q  se s 

1 log(~  #(M) ) 
> X--~-q (2mN-m/4#(M))  1-q 

m q 1 log 2 = ~ log N - m log 2 + ~ log #(M) - 1 - q 

( 1 q log #(T) ~ 1 log 2ra q. 
= m  ~ l o g N - l o g 2 +  ( 1 - q ) m /  1 ~  

This finishes the proof of Lemma 5.3. I 

5.3. PARTITIONS WITH LARGE RENYI ENTROPY. Consider q C (0, 1) and take 
N E N, N > 16. For the convenience of notation we put 5 = (1 - q)/Sq. Take 
R E N such that 

N ~R > 32(N + 31)N. 
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We choose a sequence of  Rokhl in-Halmos  towers {Tk}, 

Vk = (Mk,. . ., T'*k-l Mk) 

of height mk = Rk and measure #(Tk) = N -~nk. For each k let 

Ik  ---- ( I i ( k ) , . . . , I N - l ( k ) )  

be a collection of  independent  sets in Tk. We define a sequence of collections of 

pairwise disjoint sets Ck ---- (El(k) , . . . ,  EN-I(k)) as follows: for j = 1 , . . . ,  N -  1 

let 
Ej(0)  = 0, 

Ej (k)  = (Ej (k  - 1 ) \ ~ )  u b ( k )  for k = 1 , 2 , . . . .  

For any j E { 1 , . . . ,  N -  1} the sequence of characteristic functions {XE~ (k) }~=1 

is a Cauehy sequence in LI(X, ~ ,  #). Indeed, we obviously have 

Ej(k) iX Ej(k - 1) C_ Tk, 

and hence for kl, k2 >__ K we have 

"~¢X:) 

,,(Ej(kl) iX E~(k2)) <_ ~ ,(~k) -+ 0 
k = K  

a s K ~ c o .  

From this we conclude tha t  there exists E j  E !13 such tha t  

XE~ (k) -~ XEj for k -+ co. 

It  follows from the construct ion tha t  /~(Ej A Ei) = 0 for i ~ j .  Since we can 

neglect sets of measure zero we may  assume tha t  Ei (3 Ej = 0 and hence we have 

a collection C = ( E l , . . . ,  EN-1) of pairwise disjoint subsets of X.  

Furthermore,  for every j = 1 , . . . ,  N - 1 and any L > k one has 

L - 1  

#(Ej  k A Ij(k)) <#(Ej  k /~ E~(L))  + Z #(E~ ~(1 + 1) iX E~(l))  
l = k  

+ , (E?(k)  a Ij(k)). 

Moreover, since E;k(k) = Ij(k), #(Ej iX Ej(L)) -+ 0 as L --} co, and E j ( / +  1) iX 

E j  (1) c_ Tl, we conclude tha t  

N -'~n #(Tk) 
#(E2k A Ij(k)) <_ Z #(Tt) = #(Tk)- 1 _ U_an < 1 6 ( N + 3 1 ) N '  

l = k + l  
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and hence 

Now let ~ = 
Lemma 5.3 we conclude that 

1 ( ) 1 q 
m k H .  q,~(mk) _> ~ l o g N +  (1--q)mk 

1 
= g log N + o(1), 

where o(1) ~ 0 as k ~ ec. 
For any n E N there exists k E N such that 

E #(E• k A Ij(k)) < 
16(N + 31)" 

j = l  

{El, EN-1, EN}, where EN = X ". [.jN-1 Ej, and applying 
• " " ' j = l  

log #(Tk) + O(1) 

mk= Rk < n < R(k + 1) = mk+l. 

Since H~(q, ~?(n)) >_ H~(q, ~?(mk)), we have 

1 ,  (q,~(,~)) mk 1 (q,~?(mk)) 1 (~ ) 
n ~ >-- Ha > ,---7-i- log N + o(1) . 

m k + l  m k  - -  1 + 

This proves that 

1 ( ) 1 
hu(T,q,~) = liminf~__~oo H~ q,y(n) _>~logN.  

Everywhere above we have assumed that q E (0, 1). However, since 

h(T,#,q,~) ~ h(T,#,l/2,~) 

for all q < 0 and every partition ~, we have obtained partitions with large Rdnyi 

entropies of all orders q, q <_ 0, as well. Finally, since N is an arbitrary integer, 
we proved the remaining part of Theorem 1.2. 

6. Final remarks 
(a) Another version of R~nyi entropies can be defined using lira sup instead of 

lim inf in (2.2). In principle, due to the lack of subadditivity of Hq, there might 

exist a finite partition ~ such that 

h(T, #, q, ~ ) :=  lim sup,~ (q _ll)nHu(q'~('~) ) 

¢ lim infn__+~ (q _11)nHu(q'~('~) ) = h(T,#,q,~) 
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for some q E JR, q ~ 1. However, using the results of Theorems 1.1 and 1.2, one 

can easily show that 

h ( T , # , q ) : =  sup h ( T , # , q , ~ ) =  sup h ( T , p , q , ~ ) = h ( T , p , q )  
is finite ( is finite 

for all q E R. 

Since h(T, #, q) -- +oc for q < 1 in the ergodic and aperiodic cases, the claim 

is obviously true for q < 1. 

To complete the proof we have to show that,  for q > 1, 

(6.1) sup 
is finite 

in the ergodic case, and 

-h(T, #, q, ~) <_ h(T, #) 

(6.2) sup h(T, #, q, ~) _< h. (T, #) 
is finite 

in the aperiodic case. The first inequality (6.1) follows immediately from the 

monotonicity properties (Proposition 2.1), and the fact that for q = 1 (standard 

entropy) the limit in (2.2) exists. 

The second inequality (6.2) is proved exactly in the same manner as an in- 

equality h(T, It, q) < h.(T,  #) in section 4.1. 

(b) Formally, the pair of metric invariants (h(T, #), h(T, #, q)), q > 1, can detect 

ergodicity: if h(T, #) - h(T, #, q) > 0, then (T, #) cannot be ergodic. However, 

we were not able to find any relevant examples where this could be useful. 

In our opinion, an example of a system (X, ~3, #, T), where the non-ergodicity 

can be decided from the positiveness of h(T, #) - h(T, #, q), would be interesting. 

(c) The difference between ergodicity and non-ergodicity is less interesting 

than the difference between ergodicity and weak mixing. As is well known, weak 

mixing of T is equivalent to the ergodicity of any direct products of T with an 

ergodic autoinorphism S. Suppose T is ergodic, but not weakly mixing. Then 

there exists an ergodie measure-preserving dynamical system (Y, 5, v, S) such 

that (X × Y, 6 ,  # x u, T × S) is not ergodic. Unfortunately, the R~nyi entropies 

are not able to detect non-ergodicity of such systems: for q > 1 one has 

h(T × S, # × u, q) = h(T, #, q) + h(S, v, q) = h(T, #) + h(S, u) = h(T × S, # x v) 

where first and the third equalities are standard facts for entropy-like character- 

istics, and the second equality follows from Theorem 1.1 

(d) Entropy convergence rates were introduced in [3]. 
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Let (X, !B, ~) be a Lebesgue space and T be a measure-preserving automor- 

phism. Suppose that (X, ~ ,  #, T) has zero entropy. Hence, for any finite partition 

one has 

h (T, #, ~) = lim inf 1 H~ (~(n)) = 0. 
n - ~  n 

Let c > 0 and an, n > 1, is a sequence of positive numbers such that  an --+ oc. 

Denote by H the set of all non-trivial partitions (X, ~ ,  #) into two sets. 

The automorphism T is said to be 

• of type (LI >_ c) for ((an), H) if, for every ~ E H, 

l iminf 1 H ( ~  (n)) _> c; 
n ~  a n  

• of type (LS > e) for ((an), H) if, for every ~ C H, 

limsup 1H(~(n)) >_ c. 
n ~  a n  

Similarly one defines types (LI < c), (LS < c), (LI < c), etc. Clearly, the type 

of a transformation is a measure-theoretic invariant. 
It was shown in [3] that  there are no aperiodic transformations of type (LI < 

c~) for ((an), H), where an = o(n), n _> 1. Every totally ergodic transformation 

(i.e., T k is ergodic for every k _> 1) is of type (LS = c~) for (g(logn),H), where 

g: [0, +c~) --+ R is positive, monotone increasing and 

f ~  < ~. 
g(x) dx 

x 2 

Also, in [2] F. Blume constructed a class of weakly mixing systems, which can 

be distinguished by these invariants. 
It would interesting to know if the corresponding notions for the R~nyi en- 

tropies, in the case of both q < 1 and q > 1, can produce useful convergence 

rates, which are different from the case of standard entropy. 

Appendix. Auxiliary results 

Throughout this section we assume that N C N, N _> 2, Ix] denotes an integer 

part of x, and C k will denote the binomial coefficient 

m! 
- k ) !  

For k = O , . . . , m  let 

k k - 1  

am(k,g) = E COn ( N -  1) i, bm(k,N) = E iC~m ( g -  1) i. 
i=0 i=0 
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The  following result  is a s t ra ightforward general izat ion of L e m m a  2.4 from [3]. 

LEMMA 6.1: Let m be an integer, m > 16, and put  ko = [3m/4] + 1. Then 

(1) for k = 0 , 1 , . . . , k o  - 1 one has 

a m ( k , N )  (6.3) y m  <_ 2 m g - m / 4 ;  

(2) for k = k 0 , . . . , m  one has 

(6.4) a m ( k , g )  < 8 ( N + 3 1 )  
bin(k, N)  - m 
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