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ABSTRACT

In this paper we continue the study of Rényi entropies of measure-
preserving transformations started in {22]. We have established there
that for ergodic transformations with positive entropy, the Rényi en-
tropies of order ¢, ¢ € R, are equal to either plus infinity (g < 1), or
to the measure-theoretic (Kolmogorov-Sinai) entropy (¢ > 1). The an-
swer for non-ergodic transformations is different: the Rényi entropies of
order ¢ > 1 are equal to the essential infimum of the measure-theoretic en-
tropies of measures forming the decomposition into ergodic components.
Thus, it is possible that the Rényi entropies of order ¢ > 1 are strictly
smaller than the measure-theoretic entropy, which is the average value of
entropies of ergodic components.

This result is a bit surprising: the Rényi entropies are metric invariants,
which are sensitive to ergodicity.

The proof of the described result is based on the construction of parti-
tions with independent iterates. However, these partitions are obtained
in different ways depending on ¢: for ¢ > 1 we use a version of the
well-known Sinai theorem on Bernoulli factors for the non-ergodic trans-
formations; for ¢ < 1 we use the notion of collections of independent sets
in Rokhlin—Halmos towers and their properties.
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1. Introduction

Alfred Rényi introduced the generalization of the Shannon information (entropy)
in the beginning of sixties. His approach was based on an axiomatic definition of
information, and consisted of including the standard entropy function

n
H(ph R ;pn) = sz Ingz
i=1

into a one-parameter family of generalized entropy functions

1 n

Hq(plv"'apn):_q_llog(ng)a q#l
i=1

For a fixed probability distribution (py,...,p,) the standard entropy is recovered

from the generalized entropies as follows,

H(ps,...,pa) = lim Hy(ps,..., o).

Since then the Rényi entropies have been successfully used in information theory
and statistics, and more recently in thermodynamics and quantum mechanics. In
dynamical systems, Hentschel and Procaccia [8] suggested a one-parameter family
of generalized dimensions based on Rényi’s approach. These dimensions proved
to be extremely useful in problems of multifractal analysis and characterization
of chaotic attractors; see, e.g., [13].

Some attempts (7], [6] were made to introduce the generalized entropies of
dynamical system using Rényi’s approach. The idea was to produce a sufficiently
rich family of invariants of a dynamical system, which will take into account
the non-uniform behavior of invariant measures. However, the proposed way of
generalizing the Kolmogorov-Sinai entropy using H, instead of H; turned out to
be non-productive. In [22] we have established the following fact.

THEOREM 1.1: For an ergodic dynamical system (X,®B,u,T) with positive
measure-theoretic entropy h(T,p) > 0, the Rényi entropies are given by the
following formula:
_ ] too, <1,
WTq, k) = {h(T,u), g>1.
Also in [22] we suggested another family of generalized entropies, which
recovers the results reported in the physics literature [1].
The proof of Theorem 1.1 relies heavily on the Sinai theorem on Bernoulli
factors [19], for which the assumptions of ergodicity and positiveness of the
measure-theoretic entropy are crucial.
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In this paper we prove a result, similar to Theorem 1.1, but without the above
assumptions. We consider aperiodic measure-preserving automorphisms, i.e.,
transformations T' defined on Lebesgue space (X, B, ) such that

p({z: T"(z) = z for some n}) = 0.
The result for such systems is different from the ergodic case.

THEOREM 1.2: Suppose T is an aperiodic measure-preserving automorphism of
the Lebesgue space (X,B, p). Let = [ pydm(t) be the decomposition of p into
ergodic components, and let

ho(T, p) = m-essinf{h(T, ps)} := sup{c: m{t: h(T, us) < ¢} = 0}.

Then the Rényi entropies are as follows:

+0o0, g<l,
h(T, q, l") = { h(T’ /L) = fh(T7 ”'t) dm(t)’ qg=1,
ho(T, 1), g>1.

This result is a bit surprising because of the following: an entropy-based in-
variant can detect ergodicity. However, we are not aware of any interesting
example where this observation could be useful. The first candidates which come
to mind are the non-ergodic Markov shifts, i.e., the shifts for which the transi-
tion probability matrix P is not irreducible. It is possible in this case (provided
h(T, 1) > hi(T,p), of course) to show the Rényi entropies of order ¢ > 1 are
strictly smaller than the measure-theoretic entropy, and thus the system is not
ergodic. However, this proof is much more involved than the standard one and
follows the same idea.

The paper is organized as follows: in the next section we give a formal definition
of the Rényi entropies and establish the basic properties; in section 3 we recall
facts about the decomposition into ergodic components. We discuss a non-ergodic
version of Sinai’s theorem on Bernoulli factors, and use it for the computation
of the Rényi entropies of order ¢ > 1 in section 4. In section 5 we develop
a notion of independent partitions in Rokhlin-Halmos towers and subsequently
prove the statement for ¢ < 1. Finally, in the last section, we pose some open
questions about the possible connection between the Rényi entropies and the
recently introduced entropy convergence rates.
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2. Rényi entropies of measure-preserving transformations

The definition of the Rényi entropy of order ¢ of a measure-preserving transfor-
mation goes along the lines of the standard definition of the measure-theoretic
(Kolmogorov-Sinai) entropy and consists of 3 steps: the definition of the Rényi
entropy of a finite partition, Rényi entropy of an automorphism with respect to
a partition, and, finally, after taking the supremum over all finite partitions, the
Rényi entropy of an automorphism, which is a metric invariant.

For any g € R the entropy of order ¢ of the partition £ = {A;}2_, is the number

1 n \q
(21) H,(q,6) = { 1 log (0 w(A0)7), for g £1,
- Zi:l IL(Az) log N(Ai)v forg=1,
with the standard convention 02 = 0 for all ¢ € R and 0log0 = 0.
It is easy to check the following monotonicity property:

Hyu(q1,€) < Hyu(g2,§) for any € and g1 > ga.
The Rényi entropy of order ¢ with respect to a partition £ is defined as
1
— Tminf & (n)
(2:2) BT, 1,0,€) = liminf ~ H, (¢,¢),
where €™ = £VT=1¢V-..vT~"t1¢ is the partition into sets (\p—g TFA;, with
Aik € L.

Remark: For ¢ = 1 it is known (see for example [4]) that the limit in (2.2)
exists. The proof of this fact is based on a so-called subadditivity property
of the Shannon entropy H(1,£):

H}A(lagv 7’) < Hﬂ(l,f) + Hﬂ(l’ 7)

for all partitions £,7. As was shown by Rényi in {14], the latter is not the case
for any q # 1. This creates some additional problems in the treatment of the
Rényi entropies. Nevertheless, if £ and 5 are independent partitions then

Hu(qa§V 77) = Hu(‘L 5) + Hu(Qan)
for all ¢ € R. We will often exploit this fact.

Finally, we define the Rényi entropy of an automorphism T of order ¢ as the
number

(2.3) (T, p,q) = Slép h(T, p,q,8),

where the supremum is taken over all finite partitions £ of X.
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ProPOSITION 2.1: The Rényi entropies have the following properties:
(1) h(T,p,q) >0 for all g;
(2) MT,p,q1) > W(T, p, q2) for q1 < go;
(3) h(T,u,1) = h(T, p), where h(T, ) is the measure-theoretic (or Kolmogorov
~Sinai) entropy.
(4) h(T™, u,q) = nh(T, p,q) for any ¢ € R and every n > 0.

Properties 1-3 follow easily from the definition of h(T, g, q), and (4) has been
established in [22].

3. Decomposition into ergodic components

Let (X,B, 1) be a Lebesgue space [4]. For a measurable partition £ = {Ci}sca,
where A can be finite, countable or uncountable, we identify A and the quotient
(or factor) X/¢& — the space whose points are the elements of £&. The set A is
a Lebesgue space as well: the set £ C A is measurable if the set | J,cp C: is a
measurable subset of X, and we obtain a measure m on A by letting m(E) =
1(Usep Ct)- A system of measures {1}, ¢ € A, is called a canonical system
of conditional measures belonging to the partition £ = {Cy}¢ca, if
(1) p¢ is defined on some o-algebra B, of subsets of Cy, such that (Cy, By, pe)
is a Lebesgue space,
(2) for any A € B the set ANCy belongs to B, for m-almost all ¢; the function
(AN Cy) is a measurable function of ¢ and

H(A) = / 1e(A N C) dmi(2).

Suppose T: X -+ X is a measure-preserving automorphism. Then (X, B, y)
can be decomposed into ergodic components of T'. By this we mean the following:
there exists a T-invariant measurable partition £ = {C;} and a canonical system
of conditional measures {f} such that for almost all ¢

(Ct, B4, s, Tlc,) s ergodic.

Suppose ¢ = {C:} is the decomposition into ergodic components of
(X,B, 1, T); then

W(T ) = / W(T, pe) dn.

Consider the essential infimum and the essential supremum of measure-theoretic



284 F. TAKENS AND E. VERBITSKIY Isr. J. Math.

entropies of the measures y; from the decomposition into ergodic components:

he(T, p) =m-essinf{h(T, p:)| t € A = X/&}
:=sup{c: m({t: h(T, ) < c}) = 0},

h*(T, p) =m-esssup{h(T, )| t € A = X/&}
:=inf{c: m({t : B(T, ps) > c}) = 0}.

The quantity h*(T, p), sometimes called the entropy rate, has been previously
studied in the literature [9, 21, 23] in relation to the existence of finite generators
(generating partitions) for non-ergodic systems. A well-known theorem of Krieger
[11] states that an ergodic dynamical system with a finite measure-theoretic en-
tropy h(T,u) admits a finite generator & with card(¢) < exp(h(T,p)) + 1. It
turns out that for non-ergodic aperiodic dynamical systems a similar result is
true, provided h*(T, ) < oo: a finite generator £ exists whose cardinality does
not exceed exp(h*(T, u)) + 1.

Denote by 11, = {P = (P4, ..., Py,)} the set of all ordered partitions of X into
m sets. For any measure u on {X,B) define the partition (pseudo-)metric
pu on Il as follows:

pu(P,Q) =Y u(Pc A Qx), PQe,

k=1

If p,(P,Q) = 0 then P and Q agree except on a set of measure 0 and, of course,
in this case we say that P = Q. The space (I, p,) is a complete metric space.

For an at most countable ordered partition P of (X,B, u) the distribution
vector of P is given by

d(P, p) = (N(Pl)a.u(Pz), .. )

Suppose P and P are partitions into m sets of (X, B, u), (Y, F, v) respectively;
then the distribution distance is

(P, p) = d(P,v)| =D |u(Pe) = v(Py)].
k=1

Suppose we have a set {1 }+ca of measures on (X, B). For every ¢t € A consider
the metric p,, on II,,. The following fact will be used later: there exists a
countable set II,, C II,,, which is pu,-dense in II for almost every t € A.

The existence of such II,, follows from the fundamental properties of the
Lebesgue spaces. By definition, a Lebesgue space (X, B, 1) admits a countable
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basis I' = {B,}. This in particular means that for any measurable set A € B
there exists a set C' from a minimal o-algebra generated by I' such that

(3.1) CcA and p(ANC)=0.
Denote by 2 the countable algebra generated by I', and let

I, = {P: (Pi,...,Pn): P, te}.

Hence II,, is an at most countable collection of ordered partitions into m sets,
where elements of these partitions are taken from 2. From (3.1) we conclude
that IT,, is py dense in II,,. Moreover, for almost every ¢ € A, I, is Pu,-dense
in IT,, as well. This is a consequence of the following fact ([15), see also [16]): for
almost every t € A, the countable collection of sets I'y = I' N C; is a basis in the
Lebesgue space (Cy, By, iz )-

4. Rényi entropies of order ¢ > 1

In this section we are going to prove that A(T, pi,q) = h.(T, ) for every g > 1.
We start by showing that h(T, p, q) < h. (T, p1).

4.1. ESTIMATE FROM ABOVE. Suppose that we have two invariant measures 1,
and p9 for an automorphism I'. We do not assume these measures to be ergodic.
Without loss of generality we can assume that

(41) h(T7 :u'l) < h(T’ 11'2)‘

Consider now another invariant measure g = apy + (1 — a)us with a € (0,1).
The measure-theoretic entropy of p is given by (see [5])

hT, p) = ah(T, 1) + (1 = a)h(T, p2).

Note that due to (4.1), h(T, u) > h(T, p1). Let £ be some finite partition. For
any C € € one has

w(C) = a1 (C) + (1 — )2 (C),

and, therefore, u(C)? > a%u,(C)? for ¢ > 1. Hence, for ¢ > 1

Hula,€) = = log( 3" u(€)7) < - loga— — 1og (Y (1)

A -1 "\oe
q
= — 1logoz+H,“(q,£).
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From the above one easily concludes that

1 1
WT, p,q,€) = liminf ~H,(q, &™) < liminf ~Hy, (¢,€™) = AT, 1, ¢,6)-

On the other hand, due to the monotonicity of the Rényi entropies with respect
to ¢, for ¢ > 1 we have

h(T, p11,9,8) < MT, p1,q) < h(T, p1, 1) = h(T, p1).

Combining the two last inequalities we finally obtain that, for any ¢ > 1,

h(Tv H, Q) S h(T7 .ul)

Thus we see that the Rényi entropy of a linear combination of two measures does
not exceed a minimum of the measure-theoretic entropies of these two measures.
It is evident that the above argument goes through in the case of a finite or
countable decomposition: p =Y, o px, where oy, > 0 and Y, oy = 1.

Moreover, the above argument can be equally easily generalized to the case
of generally uncountable decomposition of an invariant measure y into ergodic
components {u;}. This is done in the following lemma.

LEMMA 4.1: For a measure preserving system (X,B, u,T) one has

(4.2) h(T, p, q) < ha(T, 1)

for every q > 1.

Proof: Consider an ergodic decomposition of (X, B, u, T) as in section 3. By the
definition of h, (T, p), for every £ > 0 the set E; = {t: h(T, pt) < ho(T, p)+¢} has
a positive m-measure. Suppose there exists €9 > 0 such that for any ¢ € (0, &)
one has m(F;) < 1.

If such €¢ > 0 does not exist, then

MT, ) = ho(T,p)  for m-a.a. t.

As a result we immediately conclude that h(T, p) = h.(T, p), and using the fact
that h(T, u) > h(T, u,q) for any ¢ > 1 we obtain our claim (4.2).

Assume such gq > 0 exists and choose any ¢ € (0,¢¢). Since m(E) € (0,1) we
can define

1 1
p1 = m/& pe dm(t), p2 = ml—)/Ef pe dm(t).
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It is clear that uy and po are invariant probability measures. Moreover, h(T, 1)
< he(T,u) + €. Using the above argument for two measures p; and pg we
conclude that, for any ¢ > 1,

h(Tv Hs Q) S h*(T7 /l‘) te.

Since € > 0 can be chosen arbitrary small, we obtain the claim (4.2). |

4.2. BERNOULLI FACTORS OF NON-ERGODIC SYSTEMS. Let us recall a defini-
tion of a Bernoulli automorphism.

Definition 4.2: An automorphism T of a Lebesgue space (X,%B,pu) is called
Bernoulli, if it is measure-theoretically isomorphic to a Bernoulli shift.

If T is a Bernoulli automorphism, then there exists a partition P of X such
that

(1) P is generating,

(2) {T™P} ez 1s a sequence of independent partitions.
Such a partition P is called an independent generator for T. A well-known
theorem by Sinai [19] states that for every ergodic automorphism T with en-
tropy h(T, i), and every positive number h such that h < h(T, p), there exists a
Bernoulli factor with entropy k. A non-ergodic version of the Sinai theorem first
appeared in [10].

THEOREM 4.3: Suppose T is an automorphism of a Lebesgue space (X, B, u).
Let T be a Bernoulli automorphism of (Y, §,v) with a finite independent genera-
tor P, card(P) = k. Let {C;, u:} be a decomposition of (X, B, u, T) into ergodic
components and m be a corresponding measure on the factor X/{C}}. Assume
that h, (T, ) > h(T,v). Then there exists a partition @, card(Q) = k, such that
(i) {T*Q} is a sequence of independent partitions,
(il) d(Q,p) = d(}_), v).

In fact, using the techniques of [10] one can establish a non-ergodic version of
the Ornstein fundamental lemma [12, 18, 20] as well. The strategy of generalizing
“ergodic” results to the non-ergodic case consists of the following. Suppose that
{C%, s} is the decomposion of p into ergodic components, and that for almost
every t there exists a partition P; of Cy into m elements which satisfies some
required property. We recall that there exists a countable family of partitions
I,,, which is Pu,-dense in the set all partitions into m elements for almost all ¢;
see section 3. Using this family I1,, one can construct a universal partition P
such that PN Cy = P; for almost all ¢.
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4.3. ESTIMATE FROM BELOW. Now we can prove a lower estimate: h({T, y1,q) >
h. (T, p) for all ¢ > 1. Before we proceed with this estimate we would like to make
a few remarks. Firstly, we compute the Rényi entropy of order ¢ for a Bernoulli
shift. Let Q@ = {1,...,k}%, and o: Q — Q be a left shift. Let v be a Bernoulli
measure on {2 generated by a probability vector p = (p1,...,pk), i€,

V{w: (wi):wm =0am,y-.-,Wn :an} =Pan ' Pays

for all m < n and ap,...,a, € {1,...,k}. Denote by £ the partition into the
following cylinders:

£= {Al,...,Ak}, An= {w: (w,-):w():n}.

Tt is not very difficult to see that, for ¢ #£ 1,

k
1
= a
h(a3V’Q7£)’“ q_llog(;p;)
In particular, if p; = - -- = px = 1/k, then h(o,v,¢,£) = log k. In this case, since
h(o,v) = logk, we immediately conclude that h(o,v,q) = logk for ¢ > 1.
We would also need the following statement.

LEMMA 4.4: Suppose T: Y — Y is an automorphism preserving a measure v.
Then for any prime p > 1 one has

h.(T?,v) = ph,(T,v).

Proof: Assume first that (T,v) is ergodic. If TP: Y — Y is ergodic, then there
is nothing to prove, since in this case h.(T?,v) = h(T?,v) = ph(T,v).

If T? is not ergodic, then [17, p. 38] there exist disjoint sets Ao, ..., Ap—1 such
that Y = f;(} A; (mod0), T(A;) = Ait1modp, and TP is ergodic on Ag with
respect to v(-|Ag). Therefore, h.(T?,v) = ph(T,v).

Hence, we conclude that if (T, ») is ergodic, then h,(T?,v) = ph(T,v) for any
prime p, p > 1.

Assume now that (T, g) is not ergodic and let = [ py dm be the decomposi-
tion of u into ergodic components. Applying the argument above to each (T, p)
we conclude that h,(T?,u;) = ph(T, ), and therefore h,(T?,p) = ph.(T, p).
|

Now let us proceed with the proof of the inequality: h(T, i, q) > h.(T, pn) for
all ¢ > 1. Assume the opposite, i.c., there exists ¢ > 1 such that h(T, y,q) <
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ho(T, ). Take a sufficiently large prime p such that there exists an integer &
satisfying

(4.3) ph(T, i, q) <logk < ph.(T, n) = h.(T?, ).
Consider a Bernoulli shift, defined as above, with p; = --+ = pr = 1/k. Then by
Theorem 4.3 there exists a Bernoulli factor Q for T? with u(Q1) = --- = pu(Qg) =

1/k. Thus h(T?, u,q,Q) = logk, but this is in contradiction with (4.3), since
ph(T, p,q) = K(T?, p,q) = sup h(T*, p, g, R).

Hence, h(T,p,q) > h.(T,p) for ¢ > 1, and together with (4.2) this gives the
equality h(T, u,q) = h(T, p) for all ¢ > 1.

5. Rényi entropies of order ¢ < 1

In this section we will prove the remaining part of Theorem 1.2. The techniques
which we are going to use will be different from the previous section. The reason
is that we do not want to assume h, (T, i) > 0 (or even h(T, ) > 0). In the case
when A, (T, ) > 0, we can (with the help of the non-ergodic version of Sinai’s
theorem on Bernoulli factors obtained in the previous section) proceed as in [22].

Our main goal is to construct partitions with arbitrarily large Rényi entropy
of order ¢, ¢ < 1: for every C > 0 we have to find a partition £ such that

e !
(5.1) T, 1, ,€) = lim inf -H,,(g, ¢®) > .

Since the Rényi entropies are monotonic in ¢ we can restrict ourselves to ¢ € (0,1).
First of all, let us make an observation which will allow us to simplify the
estimate of the Rényi entropy of a partition from below.

Definition 5.1: The Rényi entropy of order ¢, ¢ # 1, of a finite partition n = {A;}
restricted to a set F, p(F) > 0, is the number

H,(q,n|F) = 4 : IOg( Z (A OF)4>.

-1
A€

It is easy to see that for each ¢ € (0,1) and for any set F', u(F) > 0, one has

(5.2) H,(g,n) > Hu(g,n|F).

In the next subsection we will show how this can be used when F is a base of
some Rokhlin—Halmos tower and £ is some special partition.
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5.1. ROKHLIN-HALMOS TOWERS AND INDEPENDENT COLLECTIONS OF SETS.
We have assumed that T is an aperiodic automorphism. It is well known that
for such automorphisms one can construct Rokhlin-Halmos towers of any height
and measure arbitrarily close to 1.
Let M C X; then 7 = {M,TM,..., T™ M} is called a Rokhlin—-Halmos
tower if
T'MNT'M=0 for0<i#j<m-—1.

We will use the same letter 7 for Z’:_Ol T*M. The height of the tower T is said
to be m and p(7) = mu(M) is its measure.

We now give a definition of an independent collection of sets relative to a
Rokhlin—Halmos tower. We will associate to such collections certain partitions,
which will be analogous to Bernoulli partitions.

Definition 5.2: Let 7= {M,...,T™ M} be a Rokhlin—-Halmos tower. We say
that a collection T = {Iy,...,In_1} of subsets of 7 is independent relative to 7
if

(1) LnI; =0 for i # j;

(2) denote by &7 the partition of X into the sets

N-1
{h, . Inoy Iv =X | Lk
Jj=0
then
(TN TEM), ..., T Iy N T*M)Y S = (T (e nT*M) )

is a collection of independent partitions of M.
For convenience we will always assume that
(3) w(I;NTEM) = %VI—Z forj=1,....,Nandk=0,...,m— 1.

Collections of independent sets exist in every tower. This follows from the
following two observations. Firstly, since T is assumed to be aperiodic, the
invariant measure p has no atoms. Secondly, for any Lebesgue space (X, B, u),
where 1 has no atoms, for every measurable set A and each a € [0, p(A)] one can
find a set B C A with u(B) = .

It follows immediately from Definition 5.2 that if 7 is a collection of indepen-
dent sets in 7 and &7 is the corresponding partition, then

B aM={,NT ' ,n---nT* A M:j e {1,...,N}}
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is a partition of M into N* sets of equal measure u(M)/N* forevery k = 1,...,m

rm-1py

I
= L
Figure 1. Independent sets (I1, ) in 7 = (M, TM,..., T™"1M).

Using (5.2) we easily obtain an estimate on the Rényi entropy of {é,m)

M) 2l )

= mlogN+ log,u(M)

If the measure of the base of the tower (M) is not too small, say p(M) >
N-m(-2/29) then H,(q, §(m))/m> (log N)/2.

In the next subsectlon we estimate the Rényi entropy of a partition which is
‘close’ to some partition 7, where T is a collection of independent sets.

5.2. APPROXIMATION LEMMA. Let T = (I4,...,Iny_1) be a collection of inde-
pendent sets in the tower 7 = (M,...,Tm’lM) and let & = {I1,...,In} be
the corresponding partition. Suppose that another partition n = (E;,...,En) is
such that the sets

EJT = E]' Nt
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are “close” to the corresponding I;’s for j = 1,..., N — 1. Since the partition
§(m) has a large Rényi entropy (subject to a relation between N and pu{r) of
course), then the partition 7™ has a large Rényi entropy as well. This can be
rigorously formulated in the following way.

LEMMA 5.3: Let T = {Iy,...,In-1} be a collection of independent sets in 'r =
(M,...,T™ M) withm > 16, and let £z = {I1,...,In_1,In —X\U I}
be the corresponding partition. Suppose n = (El, wEn_1,EN) is another
partition of X such that

N-1

. p(T)
(6.3) 2 ( E AL) < m

Then for every q € (0,1) one has

bl (m) glogpu(r) 1 o
H(q,n ) > logN log2 + (7= 00 = 7 log 2m".

Proof: This lemma is a generalization of lemmas 2.6 and 2.7 from (3], and its

proof follows quite closely the proofs of the corresponding results in [3]. Never-
theless, due to the necessary modifications and for the sake of completeness we
provide a proof here.

We shall use the following notation: let @ = {1,..., N} and

A) =L, NT ' L,n---NnT~™L, _ forr=(ry,...,rm) € A7,
ABS)=E,, NT'E,Nn---NT™E, fors=(s1,...,8n) € Q™.
We know that u(A(r) N M) = p(M)/N™. Since 75 is close to &z in 7, we
expect the sets (™) N M to have approximately the same measure as the sets of

£ N M. Let us make it precise. We say that A(s), s € Q™, is a ‘bad’ (or a
‘fat’) element of (™) if

p(A(s) N M) > 2" N~™4 (M),

and is ‘good’ (or ‘thin’) otherwise. We collect the indexes of all ‘bad’ elements
into the set

S={seQm:A(s)is ‘bad’}.

We will now show that ‘bad’ elements of 5(™ cover less than a half of M in

(UA(S mM) % (M),

s€S

measure, i.e.,
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We introduce the following notation:

M(s,r) = A(s) N A(r) N M,

m—1
T(s,r) = U TFM(s,r),
k=0
()= |J r(s,1).
reQm™

It is easy to see that

M(s,r)NM(s,t) =0 for r#t,
T M(s,x)NT M(s,r) =0 for i#j,
r(s,r)N7(s,t) =0 for r#t.

Let s € 2™; then

u((blE} A Ij) ﬂr(s)) =y u(()\OIE} A Ij) ﬂ’r(S,r))

j=1 reQm j=1
(5.4) m—1 N-1
=y u(( U E]a Ij> ﬁT’“M(s,r)).
reQm k=0 j=1

Consider the sets participating in the last sum separately. We claim that

N-1 i
(5:5) ( U &5 a Ij) NT*M(s,r) = {%”“M(s, r), if s # 1,
j=1 >

if 8 = rg.
For this it is sufficient to show that
et ET 01, ifsy#r
T . T — 8 Tk k ks
(56) ( U1 B a5 nNEL 0L, {@, ) if 5 = 7.
]:

The proof is straightforward: let j =1,...,N —1land k= 1,...,m; then

293

(Bj aL)NE, 0Ly = (B NL) N E, 0 L ) U (N B)) N B N Ty )

=: AU B.
Suppose first that s, = ri. Then for j = s = ri we have
AuBC (B ~p)nL)u (N BN E;) =0,

since I; Ctfory=1,...,N -1
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For j # s = r we have
AUBC (BN I)NnEL) U (LN BN L) =0,

since E]‘ N Esk = Ij M Irk =0.
Now consider the case s, # rg. If j # s and j # i, then

AUBC (BN Ey)U(Ny,) =0,
If j # sk and j = ry, then A C (E] N I;) N E,, =0, but
B=(I;~E])NE,, NI, = (I,, N E,),

since E] N E], = 0.

Similarly, for j = s and j # 7, we conclude that B =@, but A = E] N I,,.
Hence we proved (5.6), and therefore (5.5).

Using (5.5) and the fact that T is measure-preserving, we can simplify (5.4):

(5.7) ((IUET AT ) N r( s)) > du(s,r)u(M(s,r)),

j=1 rem™

where dy(s,r) = #{k: sk # 7t} is the Hamming distance between s and r.
We rewrite (5.7) in the following form:

(5.8) ((UEHsI)rw) Z > pu(Ms,r)).

i=0 r:dy(s,r)=:

Given s € Q™, the number of r’s such that dg(s,r) = i is C% (N — 1)}, where
Ct, is the binomial coefficient. Let us introduce the following notation:

)= Y M), =00 (N -1y
r: dy(s,r)=i
Note that u(A(s) N M) = 0 z4(s).
Since M(s,r) C A(r) N M and p(A(r) N M) = u(M)/N™, for every i one has

OEEDY u(M(Sm))SH]—%l[ ¥ 1}
~

(59) ridg (s,r)=i r:dy (s,r)=i

= B i -1 =
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Furthermore, for every s there exists ks € {1,...,m} such that

ks—1

ks m
(5.10) Zyi > Zl‘z’(s) 2 Z Yi-
=0 =0 i=0

From (5.9) and (5.10) we conclude that i, ;(s) > Zk“ Ly; for all I > 0, and
as a result

m ks—1
(5.11) > izmi(s) > > iy
=0 =0

We will show now that if s € S then ks > {3m/4] + 1. Indeed, if s € S, then by
the definition of S,

w(A(s) N M) > 2N~/ (M),

and from (5.9) we have

1 i o omozils)  pASNM) _ nm
3 2 On(N = 1) 2 N(OM) won 2N /4,

However, Lemma 6.1 (see Appendix below) states that

Nm ZC’ t<gmNTm/

for all k = 0,1,...,[3m/4]. Hence, ks > [3m/4] + 1
Now, for all s € S we have

1

(I\(JETAI ﬁ‘r(s) Zm,s (by (5.8))

j=1
ke—~1

>3 i “7(\,%)2 CL(N 1) (by (5.11))
=0 %

II'(M) m ; )
pM)  m 1 |
~ Nm 8(N +31 ZZ%C ) (by Lemma 6.1)

ok
T 3(V13D) Zy"

N+31)Zx, (by (5.10)).
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Hence,

u(DlEg 8 L) 2 Zu((UE; A z,.) n7(s))

sES
-8(N+31 ;s,}jaz’(s) N+3 s}éjsgmuw(s )

=5 N+31) Z"(A(S)”M)

Therefore, using our assumption (5.3) one has

3 uAE ny) < S 8(N+3l) (U Ef o ;)
s€S
8(N+31)
< o) = Ju(30)

i.e., ‘bad’ elements A(s) cover not more than a half of M.
Now we can estimate the Rényi entropy of the partition 5(™):

1(1 10g< 3 wAE) ﬂM)q)

H,(g,n™) > H,(¢,n™|M) =

scQm

1 A q

> 1—q1°g<ses§\s“(A(smM) )

1 A(s)NM
SEEWE )

scOm ~ S (2mN—m/4’u(M))1 q

}

1 1 p(M)
g% <2 (sz-m/m(M))l-q)

-:—TZ—:—logN—mlog2+ 1og,u(M)- log2
1 qlog,u(T) 1
=m{-logN — log 2m?
m(4 og log2 + - q)m) 1 og2m

This finishes the proof of Lemma 5.3. [ ]

5.3. PARTITIONS WITH LARGE RENYI ENTROPY. Consider q € (0,1) and take
N € N, N > 16. For the convenience of notation we put § = (1 — q)/8g. Take
R € N such that

NOE > 32(N + 31)N.
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We choose a sequence of Rokhlin-Halmos towers {7x},

Tk = (Mg, ..., T™ 1 M)
of height my, = Rk and measure u(7) = N~9%%, For each k let

Ti = (I(k), ..., In_1(K))

be a collection of independent sets in 7. We define a sequence of collections of
pairwise disjoint sets & = (E1(k),..., En_1(k)) as follows: for j=1,...,N -1
let
E;(0) =0,
E;(k) = (Ej(k—-1)~m) UL(k) fork=1,2,....
Forany j € {1,..., N —1} the sequence of characteristic functions {xg, )}z,
is a Cauchy sequence in L;(X,B, ). Indeed, we obviously have

EJ(k) A E](k - 1) - Tk

and hence for k1, ks > K we have

400
u(Ej(kl) A Ej(k2)) <Y wm) 50 as K - oo,
k=K

From this we conclude that there exists E; € B such that
XE; (k) = XE; for k— oo.

It follows from the construction that p(E; N E;) = 0 for ¢ # j. Since we can
neglect sets of measure zero we may assume that E; N E; = @ and hence we have
a collection £ = (Ey,..., En_1) of pairwise disjoint subsets of X.

Furthermore, for every 7 =1,...,N — 1 and any L > k one has

L-1
B(E & I;i(k)) <p(Ef* A EP(L)) + Y p(EPF(1+1) & E}*D))
1=k
+ u(EJ* (k) & (k).

Moreover, since Ej*(k) = I;(k), p(E; & Ej(L)) = 0as L — 0o, and E;(1+1) A
E;(l) C 7, we conclude that

o>

N—OR # ()
™ A Li(k)) < =
u(EP o Ii(k)) < :}élu(n) #rk) T —w=sm < 16(N + 31)N”’
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and hence

z

- #(7e)

p(EF o I;i(k)) < 6V + 31"

1

<.
Il

Now let 7 = {Ey,..., Ex—1,En}, where Ex = X ~U[;' E;, and applying
Lemma 5.3 we conclude that

1 1 q
—H (me)) > = 1
m u((I’U ) =4 10gN+ (1 _ q)mk OgN(Tk) + 0(1)
1
= 5 log N+ o(1),

where o(1) — 0 as k — oo.
For any n € N there exists k € N such that

mi = Rk <n < R(k+1) = mgy1.

Since H,(g,7‘™) > H,(g,n(™*)), we have

1
1+

Mg

1 1
—H}b (q7 U(mk)) > (‘8‘ logN+ 0(1)) .

%H" (q, n(n)) = Mky1 Mk

X

This proves that
ho(T, ,7) = lim inf ~H (q <">) > Liog N
uld, q, e >N =9 .
Everywhere above we have assumed that ¢ € (0,1). However, since

h(Ta Hy q, 5) Z h(T7 K, 1/2’ 8)

for all ¢ < 0 and every partition £, we have obtained partitions with large Rényi
entropies of all orders ¢, ¢ < 0, as well. Finally, since N is an arbitrary integer,
we proved the remaining part of Theorem 1.2.

6. Final remarks

(a) Another version of Rényi entropies can be defined using limsup instead of
liminf in (2.2). In principle, due to the lack of subadditivity of Hy, there might
exist a finite partition £ such that

— 1
R(T, i, q,&) :=limsup ————— H (g, &

#lim inf - H,(q,6™) = h(T, p,q,€)

1
n=oo  (g—1)n
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for some q € R, ¢ # 1. However, using the results of Theorems 1.1 and 1.2, one
can easily show that

R(T,pt,q) := sup h(T,p,q,6)= sup h(T,p,q,6) = hT, p,q)
¢ is finite € is finite
for all ¢ € R.
Since h(T, u,q) = +oo for ¢ < 1 in the ergodic and aperiodic cases, the claim
is obviously true for ¢ < 1.
To complete the proof we have to show that, for ¢ > 1,

(6.1) sup A(T,p,q,&) < (T, )

¢ is finite

in the ergodic case, and

(6.2) sup (T, 1,q,€) < hu(T, 1)

£ is finite
in the aperiodic case. The first inequality (6.1) follows immediately from the
monotonicity properties (Proposition 2.1), and the fact that for ¢ = 1 (standard
entropy) the limit in (2.2) exists.

The second inequality (6.2) is proved exactly in the same manner as an in-
equality h(T, i, q) < hu(T, 1) in section 4.1.

(b) Formally, the pair of metric invariants (h(T, ), h(T, i1, q)), ¢ > 1, can detect
ergodicity: if h(T, ) — h(T, p,q) > 0, then (T, i) cannot be ergodic. However,
we were not able to find any relevant examples where this could be useful.

In our opinion, an example of a system (X, B, u, T'), where the non-ergodicity
can be decided from the positiveness of h(T, u) — h(T, i, ), would be interesting.

(¢) The difference between ergodicity and non-ergodicity is less interesting
than the difference between ergodicity and weak mixing. As is well known, weak
mixing of T is equivalent to the ergodicity of any direct products of T" with an
ergodic automorphism S. Suppose T is ergodic, but not weakly mixing. Then
there exists an ergodic measure-preserving dynamical system (Y,§,v,S) such
that (X xY,®, u x v, T x §) is not ergodic. Unfortunately, the Rényi entropies
are not able to detect non-ergodicity of such systems: for ¢ > 1 one has

T x S, x v,q) = KT, p,q) + h(S,v,q) = MT, ) + b(S,v) = K(T x S, u x v)

where first and the third equalities are standard facts for entropy-like character-
istics, and the second equality follows from Theorem 1.1
(d) Entropy convergence rates were introduced in [3].
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Let (X,B, 1) be a Lebesgue space and T be a measure-preserving automor-
phism. Suppose that (X, B, u, T') has zero entropy. Hence, for any finite partition
£ one has

1
— T inf = (n)y —
(T, p,€) = lim inf — H, (™) = 0.

Let ¢ > 0 and a,, n > 1, is a sequence of positive numbers such that a, — oo.
Denote by II the set of all non-trivial partitions (X, ‘B, u) into two sets.

The automorphism T is said to be

e of type (LI > ¢) for ((a,), 1) if, for every € € II,
1
lim inf — H (™) > ¢;

n—=00 Ay

e of type (LS > ¢) for ((a,), 1) if, for every £ € II,

lim sup iH(f('”)) >c

n—oc QOn
Similarly one defines types (LI < ¢}, (LS < ¢), (LI < ¢), etc. Clearly, the type
of a transformation is a measure-theoretic invariant.

It was shown in [3] that there are no aperiodic transformations of type (LI <
oo) for ((an),II), where an, = o(n), n > 1. Every totally ergodic transformation
(i.e., T* is ergodic for every k > 1) is of type (LS = oo) for (g(logn),II), where
g: [0, +00) — R is positive, monotone increasing and

oo
/ ﬂz—)da: < 00.
1

Also, in [2] F. Blume constructed a class of weakly mixing systems, which can
be distinguished by these invariants.

It would interesting to know if the corresponding notions for the Rényi en-
tropies, in the case of both ¢ < 1 and ¢ > 1, can produce useful convergence
rates, which are different from the case of standard entropy.

Appendix. Auxiliary results

Throughout this section we assume that N € N, N > 2, [z] denotes an integer
part of z, and C* will denote the binomial coefficient
m!
Ck = —— .
™ kN m—k)!
For k=0,...,mlet

k k—1
am(k,N) =" Ch (N = 1)}, bn(k,N) = iC;, (N —1)"

=0
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The following result is a straightforward generalization of Lemma 2.4 from [3].

LEMMA 6.1: Let m be an integer, m > 16, and put ko = [3m/4] + 1. Then
(1) for k=0,1,...,ky — 1 one has

(6.3) ——“m](\ﬁ;N ) < gmy-mia,

(2) for k = kg, ..., m one has

am(k,N) _ 8(N +31)

(6-4) ) S m
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